It’s easy for a big data project to fail. A first-time project is like fragile seeds we hope to sprout and grow indoors before Spring arrives. The environment must be perfect, and if it’s your first time…
You need expert guidance. Everything must be just right – and there’s no one-size-fits-all solution. But one thing is for sure – there’s a right time. With gardening, timing is everything, and with data projects the stars must be aligned. Or so it seems.
Big data projects are cunningly difficult. We know – we’ve seen massive successes, massive failures, and we’ve even been able to head off potential disasters by not engaging in the first place. Here’s the difficulty that’s hard to comprehend at first; most organizations’ data is spread all over the place with nothing unifying it, and no single platform for storage or retrieval.
When we ask what’s most important, it’s easy to talk about outcomes. For our garden, we want luscious veggies.
For our big data projects we’re focused on:
We all pretty much know what we want.
Ultimately, how do we get there? By carefully balancing the expectations of cost, speed, and accuracy. Rarely does a project get the best of all three. But even before you can make this decision, that pesky data gets in the way.
People and vendors who haven’t been in the trenches (or who want to avoid the painful truth) of an enterprise data project might simply give you a 7 step data project plan. That’s great. But it can’t possibly prepare you for the journey ahead.
We all like to talk about the sexy, shiny tools:
But the reality is that most organizations are struggling to get to the point where these tools maximize business value. Everyone loves a good experiment, but if you’re after real business outcomes and bottom-line results, prepare to pay the price.
Let’s say you sell a product that helps consumers make a purchase based on some kind of real-world data. And let’s say a majority of that data is created outside of your organization. And it’s great! You have access to hundreds or thousands of different data points from all over the world.
All you need to do is:
Guess which part of that is the most difficult? Getting the data.
And to make matters worse, if a significant number of source data are in PDF document format (our real-world experience shows this is the case), each document must be machine readable to even attempt “getting” the data.
Here’s where a data science platform is a requirement for these kind of projects. You can’t ignore the pesky unstructured data because it represents such a large portion of available data. Here’s where having a third-party expert makes the difference in big data project success. Here’s our advice…
Before you get too far into planning what you’re going to do with your data, make a plan for exactly how you’re going to get it.
Data extraction is the most difficult and hard to predict step in any big data project. Success hinges on it. Failing to fully understand the process of getting information into a meaningful structure will derail your project and destroy predicted return on investment. On the flipside, creating structure from unstructured data enables RPA and fuels downstream analytics.
Once a plan for cheap, fast, and accurate data extraction has been determined, you must create a master data model to bring the data into your database. Because the same information will be represented in different formats and with different document labels, a subject matter expert is critical to help define an understanding of what the data is and how it is to be interpreted.
Data quality tools (hopefully part of your data science workbench) will be necessary to accurately ingest, standardize, and label data. Without accurately labeled data, your big data project will have nothing reliable to process.
The more data you label, the better. When you deploy machine learning or deep learning algorithms to make sense of your data, reliability is entirely dependent on the accuracy and transparency of your data.
Clean data is also easier to integrate with downstream applications and analytics tools. By paying the price to ensure accuracy before amassing data, you’ll get more value than you can anticipate at the beginning of the project.
We want your big data projects to succeed. We’ve witnessed massive transformation in organizations that have taken our advice to heart. The road is long, bumpy, and treacherous, but well-traveled.
We're the experts in big data transformation. Learn more about why we're the expert in big data: